The Citric Acid Cycle - commons.wikimedia.org

The Citric Acid Cycle – commons.wikimedia.org

Pyruvate dehydrogenase is involved in the production of cellular energy in the mitochondria.  It acts as a catalyst in the conversion of pyruvate into acetyl-CoA, which is used in the citric acid cycle (Kreb’s cycle) in cellular respiration and production of ATP.

So, it is pretty much essential, and deficiencies of pyruvate dehydrogenase can be devastating.  Genetics Home Reference describes it: “Pyruvate dehydrogenase deficiency is characterized by the buildup of a chemical called lactic acid in the body and a variety of neurological problems. Signs and symptoms of this condition usually first appear shortly after birth, and they can vary widely among affected individuals. The most common feature is a potentially life-threatening buildup of lactic acid (lactic acidosis), which can cause nausea, vomiting, severe breathing problems, and an abnormal heartbeat. People with pyruvate dehydrogenase deficiency usually have neurological problems as well. ….  Because of the severe health effects, many individuals with pyruvate dehydrogenase deficiency do not survive past childhood, although some may live into adolescence or adulthood” [read more]

A December 2016 report looking at the metabolites in Chronic Fatigue Syndrome patients found indicators showing impairment of pyruvate dehydrogenase.  It concludes: “These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion.”

PDHA1 Gene (on the X chromosome)

The PDHA1 gene codes for a protein (E1 alpha) that combines with another to form pyruvate dehydrogenase.  This enzyme converts pyruvate into acetyl-CoA, the first step in the Kreb’s cycle.  The gene is located on the X chromosome, so males will only see one allele when they look at their DNA data.  Females will see results for two alleles, but one may be inactive due to X chromosome inactivation.    The mutations listed below are fairly rare; 23andme does not cover all of the mutations for pyruvate dehydrogenase deficiency.

  • i5002955 (C is risk allele, rs137853257)  pathogenic for Pyruvate Dehydrogenase E1-Alpha deficiency [ref]
  • i5002957 (A is risk allele, rs137853255) pathogenic for Pyruvate Dehydrogenase E1-Alpha deficiency [ref]
  • i5002960 (C is risk allele, rs137853253) pathogenic for Pyruvate Dehydrogenase E1-Alpha deficiency [ref]
  • i5002953 (G is risk allele, rs137853259) pathogenic for Pyruvate Dehydrogenase E1-Alpha deficiency [ref]
  • i5002956 (A is the risk allele, rs137853256) pathogenic for Pyruvate Dehydrogenase E1-Alpha deficiency [ref]
  • i5002954 (A is the risk allele, rs137853258) pathogenic for Pyruvate Dehydrogenase E1-Alpha deficiency [ref]

PDHB Gene

  • rs28933391 (A is the risk allele) pathogenic for Pyruvate Dehydrogenase E1-Beta deficiency
  • rs28935769 (C is the risk allele) pathogenic for Pyruvate Dehydrogenase E1-Beta deficiency

 

Diet and Nutrient Notes:

  • Thiamine and magnesium are cofactors of pyruvate dehydrogenase.  [ref]
  • In a recent case study, thiamine along with dietary restrictions reversed muscle weakness in a boy with pyruvate dehydrogenase deficiency.
  • A mouse study found that a ketogenic diet may be helpful in the prenatal development of a pyruvate dehydrogenase deficient mouse.
  • An interesting study recently looked at the mitochondrial cannabinoid receptors and their role in skeletal muscle metabolism including the gene expression of PDHA1.  The full study is available here for free.

 

Tweet about this on TwitterShare on FacebookShare on Google+Share on LinkedIn

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts

Diet / Gene Interaction

Medium chain acyl-CoA dehydrogenase deficiency

Medium-chain acyl-COA dehydrogenase (MCAD) deficiency is an “inborn error of metabolism” in which there is an impaired ability to break down medium-chain fatty acids.  In a nutshell, the body can use either glucose (through glycolysis) Read more…

Inborn Errors of Metabolism

Short-chain Acyl-CoA Dehydrogenase Deficiency – Inborn Errors of Metabolism

  SCAD Deficiency Short Chain Acyl-CoA Dehydrogenase Deficiency (SCADD) is a disorder of fatty acid oxidation and mitochondrial energy production.  Think back to high school biology class when you learned that the mitochondria are the Read more…