Join Here   |   Log In

HDL Levels Can Be Genetic

HDL cholesterol is known as the ‘good’ cholesterol. A study in the late 1970s/early 80s known as the Framingham Study determined that higher levels of HDL cholesterol were protective against heart disease. This is one of those studies foundational to many cardiovascular health prevention ideas still around today.[ref] The general consensus seemed to be that HDL levels above 60 mg/dl are ‘good’ and decrease the risk of cardiovascular disease.

What does HDL do?

HDL stands for high-density lipoprotein. It is a transport vessel for cholesterol, triglycerides, and phospholipids built around an APOA1 protein. It usually is responsible for moving cholesterol and fats out of the cells. HDL cholesterol, then, is the cholesterol in the HDL particles.[ref]

However, a few recent studies show that you can have too much of a good thing, and HDL levels over 116 mg/dL for men or 135 mg/dL for women cause an increase in the risk of heart disease.[ref]

HDL cholesterol also plays a role in the immune system, with higher levels of HDL associated with better outcomes from parasites and bacterial infections.[ref]

HDL cholesterol levels are considered to be about half due to genes (with the rest due to diet, infection, etc.).[ref][ref]

HDL Cholesterol Genotype Report

Members: Log in to see your data below.
Not a member? Join here.
Why is this section is now only for members? Here’s why…

Member Content:

  Log In

Why join Genetic Lifehacks?

~ Membership supports Genetic Lifehack's goal of explaining the latest health and genetics research.
~ It gives you access to the full article, including the Genotype and Lifehacks sections.
~ You'll see your genetic data in the articles and reports.

Join Here


If you want to raise your HDL levels, there are several dietary interventions you could try.

Olive Oil:
High-phenolic olive oil was found in a study to increase HDL cholesterol.[ref] How do you find out what the phenolic content of your olive oil is? This article explains that high phenolic content olive oil will have a peppery aftertaste that makes you want to cough.

Member Content:

  Log In

Why join Genetic Lifehacks?

~ Membership supports Genetic Lifehack's goal of explaining the latest health and genetics research.
~ It gives you access to the full article, including the Genotype and Lifehacks sections.
~ You'll see your genetic data in the articles and reports.

Join Here

Related Articles and Topics:

LDL Cholesterol Genes
Heart disease is the leading cause of death in the US and around the world, and high LDL-cholesterol levels have been linked in many studies to increased heart disease. Standard medical advice on ideal cholesterol levels and cardiovascular disease are often confusing, ever-changing, and sometimes downright contradictory.

The Genetics of High Triglycerides
Triglycerides are the main type of fat in your blood. Triglyceride is a general term for a type of lipid-containing three fatty acids (tri) bound to a glycerol. Most importantly, triglycerides are used by the body as energy and are stored in adipocytes (fat cells that compose adipose tissue).

Lipoprotein a: How to check your genetic data
High Lp(a) levels are a big risk factor for sudden heart attacks. Your Lp(a) levels are mainly controlled by your genetic variants. Check to see if you carry genetic variants that increase or decrease Lp(a).

What is YOUR risk of heart disease?
Coronary artery disease (CAD) is heritable. Understanding your genes and a ‘heart-healthy’ lifestyle can prevent heart attacks and death.


Bustami, Jasmin, et al. “Cholesteryl Ester Transfer Protein (CETP) I405V Polymorphism and Cardiovascular Disease in Eastern European Caucasians – a Cross-Sectional Study.” BMC Geriatrics, vol. 16, July 2016, p. 144. PubMed Central,

Colombo, Caroline Macoris, et al. “Short-Term Effects of Moderate Intensity Physical Activity in Patients with Metabolic Syndrome.” Einstein (Sao Paulo, Brazil), vol. 11, no. 3, Sept. 2013, pp. 324–30. PubMed,

Di Raimondo, D., et al. “Metabolic and Anti-Inflammatory Effects of a Home-Based Programme of Aerobic Physical Exercise.” International Journal of Clinical Practice, vol. 67, no. 12, Dec. 2013, pp. 1247–53. PubMed,

Genga, Kelly Roveran, et al. “CETP Genetic Variant Rs1800777 (Allele A) Is Associated with Abnormally Low HDL-C Levels and Increased Risk of AKI during Sepsis.” Scientific Reports, vol. 8, no. 1, Nov. 2018, p. 16764.,

Gordon, T., et al. “High Density Lipoprotein as a Protective Factor against Coronary Heart Disease. The Framingham Study.” The American Journal of Medicine, vol. 62, no. 5, May 1977, pp. 707–14. PubMed,

Guo, Shu-Xia, et al. “Associations of Cholesteryl Ester Transfer Protein TaqIB Polymorphism with the Composite Ischemic Cardiovascular Disease Risk and HDL-C Concentrations: A Meta-Analysis.” International Journal of Environmental Research and Public Health, vol. 13, no. 9, Sept. 2016, p. E882. PubMed,

Kajani, Sarina, et al. “Unravelling HDL—Looking beyond the Cholesterol Surface to the Quality Within.” International Journal of Molecular Sciences, vol. 19, no. 7, July 2018, p. 1971. PubMed Central,

Mackay, Dylan S., et al. “Cholesterol Ester Transfer Protein Polymorphism Rs5882 Is Associated with Triglyceride-Lowering in Response to Plant Sterol Consumption.” Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, vol. 40, no. 8, Aug. 2015, pp. 846–49. PubMed,

Madsen, Christian M., et al. “Extreme High High-Density Lipoprotein Cholesterol Is Paradoxically Associated with High Mortality in Men and Women: Two Prospective Cohort Studies.” European Heart Journal, vol. 38, no. 32, Aug. 2017, pp. 2478–86. PubMed,

Marrugat, Jaume, et al. “Effects of Differing Phenolic Content in Dietary Olive Oils on Lipids and LDL Oxidation–a Randomized Controlled Trial.” European Journal of Nutrition, vol. 43, no. 3, June 2004, pp. 140–47. PubMed,

Nyberg, Sofia, et al. “Effects of Exercise with or without Blueberries in the Diet on Cardio-Metabolic Risk Factors: An Exploratory Pilot Study in Healthy Subjects.” Upsala Journal of Medical Sciences, vol. 118, no. 4, Nov. 2013, pp. 247–55. PubMed Central,

Okumura, Kenji, et al. “Differential Effect of Two Common Polymorphisms in the Cholesteryl Ester Transfer Protein Gene on Low-Density Lipoprotein Particle Size.” Atherosclerosis, vol. 161, no. 2, Apr. 2002, pp. 425–31. PubMed,

Peloso, Gina M., et al. “Common Genetic Variation in Multiple Metabolic Pathways Influences Susceptibility to Low HDL-Cholesterol and Coronary Heart Disease.” Journal of Lipid Research, vol. 51, no. 12, Dec. 2010, pp. 3524–32. PubMed Central,

Pirillo, Angela, et al. “HDL in Infectious Diseases and Sepsis.” Handbook of Experimental Pharmacology, vol. 224, 2015, pp. 483–508. PubMed,

Tay, Jeannie, et al. “Comparison of Low- and High-Carbohydrate Diets for Type 2 Diabetes Management: A Randomized Trial.” The American Journal of Clinical Nutrition, vol. 102, no. 4, Oct. 2015, pp. 780–90. PubMed,

Tsai, Michael Y., et al. “Cholesteryl Ester Transfer Protein Genetic Polymorphisms, HDL Cholesterol, and Subclinical Cardiovascular Disease in the Multi-Ethnic Study of Atherosclerosis.” Atherosclerosis, vol. 200, no. 2, Oct. 2008, pp. 359–67. PubMed,

Weaver-Goss, Suzanne. “Olive Oil Health Benefits | Organic Olive Oil | Olive Oil Nutrition.” Gimme the Good Stuff, 23 Mar. 2018,

Weissglas-Volkov, Daphna, and Päivi Pajukanta. “Genetic Causes of High and Low Serum HDL-Cholesterol.” Journal of Lipid Research, vol. 51, no. 8, Aug. 2010, pp. 2032–57. PubMed Central,

Willer, Cristen J., et al. “Newly Identified Loci That Influence Lipid Concentrations and Risk of Coronary Artery Disease.” Nature Genetics, vol. 40, no. 2, Feb. 2008, pp. 161–69. PubMed Central,

Zhu, Yanna, et al. “Anthocyanin Supplementation Improves HDL-Associated Paraoxonase 1 Activity and Enhances Cholesterol Efflux Capacity in Subjects with Hypercholesterolemia.” The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 2, Feb. 2014, pp. 561–69. PubMed,

About the Author:
Debbie Moon is the founder of Genetic Lifehacks. Fascinated by the connections between genes, diet, and health, her goal is to help you understand how to apply genetics to your diet and lifestyle decisions. Debbie has a BS in engineering from Colorado School of Mines and an MSc in biological sciences from Clemson University. Debbie combines an engineering mindset with a biological systems approach to help you understand how genetic differences impact your optimal health.