Serotonin 2A receptor: Psychedelic response and Alzheimer’s disease

What do Alzheimer’s disease and LSD have in common?

The serotonin 2A receptor…

Clinical trials are underway for using low-dose LSD or psilocybin, two psychedelic drugs that bind to the serotonin 2A receptor, to treat Alzheimer’s disease.

This article digs into current research on the serotonin 2A receptor, psychedelics response, and genetic variants — with a focus on brain aging and dementia. Members will see their genotype report below, plus additional solutions in the Lifehacks section. Join today

Serotonin and the Serotonin 2A Receptor

Serotonin is a neurotransmitter created from the amino acid tryptophan. Most of the body’s serotonin is found in the intestines, where it acts as a neurotransmitter controlling intestinal peristalsis.

In the brain, serotonin helps to transmit signals between neurons. It is involved in learning, mood, memory, and emotions. Only about 1 – 2% of the body’s serotonin is found in the brain.[ref]

Serotonin cannot cross the blood-brain barrier, so it has to be synthesized in the brain from tryptophan. The body tightly regulates serotonin levels, and it is broken down in the brain by the MAO (monoamine oxidase) enzyme. MAO inhibitors are a class of anti-depressant medications.

Recent research also elucidates the role of serotonin in immune function.[ref] This ties in with the role of serotonin in mood disorders as well as the role of inflammation in aging and dementia. (Read more about inflammation, genetics, anxiety, and depression.)

Serotonin Receptors

For serotonin to send a signal between neurons, the end of one neuron releases it to bind to a serotonin receptor of the next neuron. Activating the receptor then causes an action to occur in the next neuron.

Serotonin is produced and released in the axon terminal of a neuron. The neighboring neuron’s dendrites contain serotonin receptors to receive the serotonin.

Serotonin is present in all animals and acts as either a hormone or a neurotransmitter.

There are seven different families of receptors for serotonin in the human body, causing different actions to occur via binding to serotonin. The receptors are known as 5-HT or 5-hydroxytryptamine receptors.

The serotonin 2A receptor (5-HT2A) is found throughout the body, including in the brain. It is important in regulating memory, mood, cognition, appetite, anxiety, perception, sleep, thermoregulation, and vasoconstriction.

When activated, the effect of the serotonin 2A receptor is to increase the excitability of the neuron. The activation of this receptor causes:

  • In neurons that are excitatory, activation of the serotonin 2A receptor causes the neuron to increase firing.
  • In neurons that are inhibitory, such as GABAergic neurons, activation of the serotonin 2A receptor results in inhibiting neighboring neurons.
  • Some neurons have more than one type of serotonin receptor with different effects.

In other words, this isn’t a straightforward equation of serotonin 2A = excitation in the brain.[ref]

So why do we care about serotonin 2A? It causes some unique effects in the brain, which could be important for mood, cognition, and preventing dementia.

Psychoactive chemicals and serotonin 2A

Humans have been using psychoactive chemicals in various forms throughout history. From Native Americans using peyote (mescaline) to Mazatec priests using psilocybin mushrooms, many historical uses of natural psychedelics have been recorded.

While serotonin is the naturally produced ligand that binds to the serotonin 2A receptor, certain drugs, and natural substances also can bind to this receptor, causing interesting effects.

Drugs that bind to the serotonin 2A receptor include LSD (lysergic diethylamide), mescaline, DMT, and psilocybin.[ref]

Hallucinogens at higher levels cause altered states of consciousness – changes in mood, perception, and thinking. Animal experiments show that binding with the serotonin 2A receptor, also known as the 5-HT2A receptor, is necessary for the hallucinogenic effects of certain drugs.

Interestingly, there are a few drugs that bind to the serotonin 2A receptor that do not cause hallucinations or altered cognitive states. These include lisuride (Parkinson’s medication) and ergotamine (migraine med).[ref] It seems to depend on how strongly different parts of the receptor are activated. Ergotamine is derived from ergot, which is a fungal growth on rye plants that can cause hallucinations.

What else does the serotonin 2A receptor impact?

To determine the function of the receptor, researchers used low doses of LSD as a serotonin 2A receptor agonist (something that binds to and activates the receptor). In comparison, many studies also use a placebo control group as well as a drug that inactivates the serotonin 2A receptor. This allows the investigators to determine the exact effect on the serotonin 2A receptor.

  • Social cognition: Another study shows the serotonin 2A receptor’s importance in social cognition and the sense of self in relation to others.[ref]
  • Adaptation to a group: A 2020 study shows the serotonin 2A receptor increases “social adaptation but only if the opinions of others are similar to the individual’s own.”[ref]
  • Relevance of stimuli: Researchers found that the serotonin 2A receptor alters how people find meaning from stimuli.[ref]
  • Active coping: Researchers theorize that the serotonin 2A receptor is important for brain plasticity and the ability to actively cope with a stressor.[ref]
  • Music: A recent study investigated the role of the serotonin 2A receptor in people who were listening to music. The researchers found that the serotonin 2A receptor is critical in a person’s response to music, such as the emotions, connections, and meaningfulness of the music.[ref]

The laws on testing psychedelics have just been changed in the past couple of years, allowing research on their efficacy in treating mood disorders. Prior to this, laws put into place in the 1970s during the ‘war on drugs’ in the US kept these compounds from being available for research.

The Aging Brain: why psychedelics and the serotonin 2A receptor may be important

Studies over the last decade have investigated the effects of serotonin 2A receptor agonists on depression and anxiety. Specifically, researchers have found:

  • A high, single dose of psilocybin produced a large decrease in depression and anxiety in cancer patients[ref]
  • Various doses of LSD, along with psychotherapy, decrease anxiety in people with life-threatening illnesses[ref]
  • In a small trial, a single dose of ayahuasca alleviated depression in patients with recurrent depression[ref]

As we age, the number of serotonin 2A receptors in the brain decreases significantly.[ref]

Importantly, these receptors are located in parts of the brain impacted by dementia, including the prefrontal cortex and the hippocampus.[ref]

The plasticity of the brain is the ability of the brain to change and grow.

Psilocybin and LSD increase neurogenesis – the growth of neurons – and induce brain plasticity.[ref]

Importantly, psychedelics can increase brain plasticity at very low doses (microdoses), which do not impair function or cause hallucinations.[ref]

Additionally, safety studies on microdoses of LSD and ayahuasca showed no detrimental side effects.[ref][ref] Most of the studies are rather small, though, so larger and more rigorous studies are needed here.

Alzheimer’s and serotonin 2A receptors:

Alzheimer’s disease remains the primary cause of dementia and affects about 10% of people over the age of 65. This creates a huge economic burden, as well as greatly impacts family members who act as caregivers. While mortality rates for stroke, heart disease, and certain cancers are decreasing, the number of deaths for Alzheimer’s increased by 71% between 2000 and 2013.[ref] Current numbers are even worse.

In Alzheimer’s patients, the expression of the serotonin 2A receptors is significantly decreased in the brain when compared to people their age without cognitive dysfunction. One study estimated a 33% decrease in receptor expression, which is a large change compared to age-matched controls. Other studies show the reduction in serotonin 2A receptors occurs early in Alzheimer’s when cognitive dysfunction is mild.[ref][ref][ref][ref][ref]

Research shows reduced serotonin levels in the cortex of people who had psychosis with Alzheimer’s disease (postmortem study).

The study also shows a genetic variant in the serotonin 2A receptor gene has associations with an increased risk of psychosis in Alzheimer’s disease. Psychosis in Alzheimer’s may not be entirely genetic, though. In addition to the serotonin 2A receptor variants, it is likely that psychosis in Alzheimer’s also involves environmental factors such as medication side effects, angry caregivers, or stressful changes.[ref][ref]

Additionally, MAO-A levels are also decreased in Alzheimer’s. MAO-A (monoamine oxidase) is the enzyme that breaks down serotonin, regulating the amount of serotonin available.[ref]

I mentioned above that serotonin also impacts the immune system, which is integral to the formation of amyloid-beta plaque in the brain (increased in Alzheimer’s patients). Along with elevated cytokines such as TNF-alpha, the reduction of serotonin has been shown to impact the formation of amyloid-beta plaques as well as increase depression in Alzheimer’s patients.[ref][ref][ref]

Will increasing serotonin help reverse Alzheimer’s? Probably not.

While animal studies on SSRIs were initially exciting, SSRI studies for Alzheimer’s patients showed mixed results. SSRIs increase the amount of time that serotonin hangs out in the synapses of the neurons, but it doesn’t seem to reverse or stop Alzheimer’s pathology in humans, at least in the short term.[ref][ref][ref][ref]

On the other hand, long-term prior use of SSRIs for depression may delay the progression of Alzheimer’s dementia.[ref][ref] While most of the antidepressant effects of SSRIs are thought to come from the serotonin 1A receptor, recent genetic studies point to the role of the serotonin 2A receptor in the long-term effects of SSRIs.[ref]

So why would a serotonin 2A agonist, such as LSD, reduce Alzheimer’s pathology? Increasing the amount of time that serotonin hangs out in the synapse in the brain doesn’t necessarily increase the serotonin 2A receptors in the aging brain.

On the other hand, psychedelic drugs increase the outgrowths of the serotonergic neurons, thus increasing the number of serotonin 2A receptors.[ref]

Increasing neurogenesis, plasticity, and brain connectedness – rather than a focus on serotonin – seems to be the key here.[ref][ref]

Activating the serotonin 2A receptor also increases mitochondrial biogenesis (formation of new mitochondria).[ref] Alzheimer’s disease is also linked to decreased mitochondrial function in the brain.

Repeated microdoses of LSD are in clinical trials in older adults to determine safety and efficacy for Alzheimer’s prevention. Initial phase I clinical trial results show that low doses of LSD are well tolerated without adverse events.[ref]


HTR2A Genotype Report:

Members: Log in to see your data below.
Not a member? Join here. Membership lets you see your data right in each article and also gives you access to the member’s only information in the Lifehacks sections.

 

HTR2A gene: encodes the serotonin 2A receptor

Check your genetic data for rs6313 T102C (23andMe v4, v5; AncestryDNA):

  • A/A: typical risk
  • A/G: increased risk of Alzheimer’s in people without the APOE E4 allele; increased risk of psychosis in Alzheimer’s disease
  • G/G: increased risk of Alzheimer’s in people without the APOE E4 allele[ref]; increased risk of psychosis in Alzheimer’s disease[ref][ref][ref]; possible interaction with citalopram and agitation in Alzheimer’s[ref]; Alzheimer’s patients more likely to respond to antipsychotics[ref]

Members: Your genotype for rs6313 is .

This is a really well-studied genetic variant. Other studies on rs6313 (unrelated to Alzheimer’s/brain aging) show:

  • Increased risk of sexual dysfunction with citalopram (SSRI) for A allele carriers.[ref]
  • Moderate interaction with response to MDMA.[ref]
  • Increased suicide risk in people with the G/G genotype and stressful life events.[ref]

Check your genetic data for rs6314 C1354T or His452Tyr (23andMe v4, v5; AncestryDNA):

  • A/A: for everyone: reduced serotonin 2A receptors in the prefrontal cortex, increased risk of social withdrawal, diminished hippocampal response to novel stimuli[ref][ref][ref];
    specifically for Alzheimer’s patients: poorer memory performance and decreased recognition task scores[ref]
  • A/G: reduced serotonin 2A receptors in the prefrontal cortex, increased risk of social withdrawal, diminished hippocampal response to novel stimuli
  • G/G: typical

Members: Your genotype for rs6314 is .

Other studies on rs6314 (unrelated to Alzheimer’s/brain aging) show:

  • Much better paroxetine therapy response in people with A/A or A/G (>7-fold increase in the odds that paroxetine will work).[ref]
  • An association between the rs6314 A allele and susceptibility towards food reinforcement.[ref]
  • A study found those with the A/A or A/G genotypes may not improve as much on olanzapine (an antipsychotic).[ref]

MAO-A variants:

The MAOA gene encodes the monoamine oxidase enzyme, which breaks down serotonin, tyramine, dopamine, epinephrine, and norepinephrine. In conjunction with certain psychedelics, such as ayahuasca, substances inhibiting MAO-A are often consumed. Additionally, some mushrooms containing psilocybin also contain natural MAO-A inhibitors.

A common genetic variant in MAOA causes a decrease in the amount of MAOA produced. The MAOA gene is found on the X chromosome, so males only have one copy of the gene.  You may be wondering about the effects of inhibiting MAOA with psychedelics in a person that already has impaired MAOA enzyme function… While it seems like this could be a bad combination, I can’t find any research on this yet.

Related article: The cheese effect – genes involved in breaking down tyramine

Check your genetic data for rs6323 (23andMe v4 only):

  • G/G or G: typical
  • G/T: somewhat reduced MAOA activity
  • T/T or T (males): reduced MAOA activity[ref][ref]

Members: Your genotype for rs6323 is .

 

If you want to know more about your genetic risk of Alzheimer’s disease, you can check your APOE type.


Lifehacks:

The rest of this article is for Genetic Lifehacks members only. Consider joining today to see the rest of this article.

Member Content:

An active subscription is required to access this content.

Join Here for full access to this article, genotype reports, and much more!


Already a member? Log in below.


Related Articles and Topics:

The Warrior Gene: Understanding the Role of Monoamine Oxidase Enzymes (MAOA and MAOB)
The MAOA and MAOB genes encode enzymes that break down certain neurotransmitters. People with low MAO may be prone to mood issues in certain circumstances..

Serotonin: How your genes affect this neurotransmitter
Serotonin… a word that brings to mind a commercial that might show our happy brain neurons bouncing serotonin between them. There is a lot more to this molecule than most of us realize! This article covers how the body makes and transports serotonin and the needed receptors to complete its pathway.

Boosting NAD+ levels to fight the diseases of aging
Explore the research about how nicotinamide riboside (NR) and NMN are being used to reverse aging. Learn about how your genes naturally affect your NAD+ levels, and how this interacts with the aging process.


About the Author:
Debbie Moon is the founder of Genetic Lifehacks. Fascinated by the connections between genes, diet, and health, her goal is to help you understand how to apply genetics to your diet and lifestyle decisions. Debbie has a BS in engineering and also an MSc in biological sciences from Clemson University. Debbie combines an engineering mindset with a biological systems approach to help you understand how genetic differences impact your optimal health.

Find your next article: