Join Here   |   Log In

Motivation to exercise? It’s genetic.

Exercise is essential for maintaining physical and mental health, but it can be difficult to find the motivation to get up and get moving. However, recent research suggests that our genetics may influence our ability to find motivation for exercise. This article will explore the latest findings on the genetic factors that may play a role in our motivation to exercise and how we can use this knowledge to improve our own fitness habits.
Members will see their genotype report below, plus additional solutions in the Lifehacks section. Consider joining today. 

Why doesn’t everyone like to exercise?

Let’s face it. Some people don’t like to exercise, and no matter how many Instagram inspiration posts they see, they aren’t going to head to the gym.

A study in the journal Behavioral Brain Research paints a fascinating picture of why some people are more motivated to exercise. The study looked at the dopaminergic system to see how people’s genetic variants could alter the ‘reinforcing value’ of exercise.

Most people in the US are too sedentary, and 90% of Americans don’t meet the recommendations for physical activity. The US Department of Health and Human Services claims that adults need 2 1/2 hours/week of moderate-intensity aerobic exercise and two days/week of strength training.[ref]

According to the researchers, one factor in adhering to the guidelines is “the reinforcing value of exercise relative to a competing alternative behavior”. In other words, would you rather exercise or do something else…

The study examined 178 adults (average age 27) who wore activity trackers. The participants also rated how much they liked different exercises and sedentary activities.

The researchers investigated 23 different genetic variants – ranging from FTO (obesity-related variants) to ACE (muscle/heart disease) to dopamine variants.

Exercise Motivation Genotype Report:

Members: Log in to see your data below.
Not a member? Join here.
Why is this section is now only for members? Here’s why…

Member Content:

An active subscription is required to access this content.

Join Here

Already a member? Log in below.



Perhaps understanding the reason why you don’t want to exercise will motivate you to get beyond that and start working out more :-)

It is always interesting to see the genetic pathways involved in a topic and then trying to manipulate that pathway for a benefit. Here are some suggestions on exercise motivation, but I encourage you to think outside the box and come up with what will work for you.

There are a lot of good reasons to include exercise in your routine. From heart health to longevity, moderate exercise is vital.

Dopamine rewards:

Member Content:

An active subscription is required to access this content.

Join Here

Already a member? Log in below.

Related Articles and Topics:

Leptin Receptors: Genetics and Hunger
Do you wonder why other people don’t seem to struggle with wanting to eat more? Ever wished your body could naturally know that it has had enough food and turn off the desire to eat? It could be that you carry a genetic variant in the leptin receptor gene, which is linked to not feeling as full or satisfied by your meal – and thus tend to eat just a little bit more.

Hacking your endocannabinoids for weight loss
What drives us to eat? We spend a lot of time working to make money to buy food, prepare food, and consume food. It is a basic need of all animals, and without an innate drive to seek out food, we would perish. This is where our endocannabinoid system comes into play.

GLP-1 Receptor Agonists for Weight Loss: Genetic Interactions
GLP-1 receptor agonists, like semaglutide and liraglutide, are used for weight loss by increasing the body’s sensitivity to insulin and reducing hunger. However, genetic variants can alter the response in some people.

Athletic Performance Genes
Genes control the formation, composition, and type of muscle fiber. Learn how to optimize your training when genetics comes into play, affecting muscle composition and endurance.



2015-2020 Dietary Guidelines | Health.Gov. Accessed 4 Jan. 2023.

Flack, Kyle, et al. “Genetic Variations in the Dopamine Reward System Influence Exercise Reinforcement and Tolerance for Exercise Intensity.” Behavioural Brain Research, vol. 375, Dec. 2019, p. 112148. ScienceDirect,

About the Author:
Debbie Moon is the founder of Genetic Lifehacks. Fascinated by the connections between genes, diet, and health, her goal is to help you understand how to apply genetics to your diet and lifestyle decisions. Debbie has a BS in engineering and also an MSc in biological sciences from Clemson University. Debbie combines an engineering mindset with a biological systems approach to help you understand how genetic differences impact your optimal health.

Find your next article: