Alpha-1 Antitrypsin Deficiency

A genetic mutation in the SERPINA1 gene causes alpha-1 antitrypsin deficiency. This increases a person’s susceptibility to COPD (chronic obstructive pulmonary disease) and, in some cases, cirrhosis of the liver.

As far as rare mutations go, the alpha-1 antitrypsin deficiency mutations are fairly common and pop-ups on 23andMe or AncestryDNA data more often than you would think. For a lot of people, it is one of those lightbulb moments of – such as ‘this is why Mom/Dad had COPD at a relatively young age’.

What is alpha-1 antitrypsin?

Alpha-1 antitrypsin is an enzyme produced in your body. The SERPINA1 (serine protease inhibitor 1) gene codes for the alpha-1 antitrypsin protein. Alpha-1 antitrypsin was named a while ago – before the function was fully understood –  so its name is a bit misleading.

Certain cells in your lungs produce a protein called elastin. The elastin increases the elasticity and strength of the lung tissue in the alveoli, which are the tiny air sacs where oxygen is exchanged with carbon dioxide.

Elastin, though, isn’t unique just to your lung cells. Gram-negative bacteria also produce the elastin protein. As a result, your immune system (specifically the neutrophils), creates an enzyme called elastase to break apart the elastin in the outer membrane of the bacteria.

Elastase is great – when you need to get rid of bacteria. But you don’t want too much elastase hanging around, because it can also break down the elastin in the cells in your lungs.

Alpha-1 antitrypsin comes into play here. It is a protease inhibitor – meaning it inhibits a protein that breaks down other proteins. Specifically, alpha-1 antitrypsin inhibits elastase so it won’t break down your lung cells.

Alpha-1 antitrypsin is made in the liver and then transported to the lungs. In the lungs, it deactivates elastase before it damages lung cells. Pretty neat system – elastase can attack gram-negative bacteria in the lungs, but alpha-1 antitrypsin keeps it from damaging your own lung cells.

What is alpha-1 antitrypsin deficiency?

Certain mutations in the SERPINA1 gene can cause alpha-1 antitrypsin deficiency due to the alpha-1 antitrypsin protein not functioning appropriately. Alpha-1 antitrypsin deficiency is thought to be one of the most common hereditary diseases worldwide. [ref]

Alveoli in the lungs can lose their elasticity.

Without alpha-1, there can be too much elastase, causing damage to lung tissue. The damage occurs in the alveoli. When the alveoli lose some of their elasticity, it can cause problems with easily bringing in oxygen and moving out CO2.

People who carry alpha-1 antitrypsin deficiency mutations are more likely to have COPD – chronic obstructive pulmonary disease.

COPD causes shortness of breath, wheezing, cough, and mucus production. Other terms for COPD include emphysema and chronic bronchitis.

As you can imagine, smoking is really bad for people with alpha-1 antitrypsin deficiency. Carriers of the alpha-1 antitrypsin deficiency mutations are at a much higher and earlier risk of COPD compared with smokers without the mutation.

The liver produces alpha-1 antitrypsin in response to signals from the body for illness (fever, inflammatory signals).  Therefore, it counteracts the neutrophil’s production of elastase at a time when the neutrophils are actively combating an infection. [ref ]

Common alpha-1 antitrypsin deficiency variants:

The two, most common mutations for alpha-1 antitrypsin deficiency are known as Pi*Z and Pi*S. The mutations cause differences in the alpha-1 antitrypsin enzyme, and there can be different outcomes based on which mutation a person carries.

If you are reading through the research on alpha-1 antitrypsin deficiency, the normal version of the gene is referenced as Pi*M.

The Pi*Z and Pi*S mutations cause the alpha-1 trypsin protein to be misfolded when produced in the liver.  Because the shape of the protein is altered, the mutant alpha-1 antitrypsin gets stuck within the liver, unable to make it to the lungs. The mutant proteins stuck in the liver cells increase the risk of cirrhosis (liver damage/failure).

SERPINA Pi*Z mutation:

About 1% of Caucasian populations carry one copy of the SERPINA1 mutation referred to as Pi*Z.

In people with two copies of the Pi*Z mutation, both the lungs and the liver can be affected. Cirrhosis is a common complication, in addition to COPD. Infants with two copies of the Pi*Z are likely to have jaundice. [ref ]

People who carry one copy of the Pi*Z mutation are more likely to have COPD if they smoke. They are also likely to have decreased lung function.[ref ]  New research also shows carrying the Pi*Z allele is also linked to an increased risk of high blood pressure. [ref] Additionally, people with two copies of the Pi*Z mutation may be at risk for higher iron and ferritin levels. [ref]

Check your genetic data for rs28929474 (23andMe v4, v5; AncestryDNA *):

  • T/T:  two copies of Pi*Z mutation, alpha-1 antitrypsin levels often less than 30% of normal [ref ]
  • C/T: one copy of the Pi*Z mutation
  • C/C: typical

SERPINA Pi*S mutation:

The Pi*S mutation also causes decreased alpha-1 antitrypsin. Carriers of the Pi*S mutation are at a higher risk for liver fibrosis. [ref ]

Check your genetic data for rs17580 (23andMe v4, v5; AncestryDNA *):

  • A/A:  two copies of Pi*S mutation
  • A/T: one copy of the Pi*S mutation
  • T/T: typical

Carriers of one copy of the Pi*Z or Pi*S mutation are at a higher risk of having problems with lung function, especially in smokers.[ref ]

Carriers of one copy of the mutations are also at a higher risk of cirrhosis with heavy alcohol consumption.[ref ]

*All rs id data is given in the plus orientation to match with 23andMe and AncestryDNA genetic raw data format.

Interaction with other Genes:

Our genetic variants act together not only with environmental factors but also with other genetic changes.

The TNF gene codes for the inflammatory cytokine, TNF-alpha, which is part of the body’s immune response system. Higher amounts of TNF-alpha can cause chronically increased inflammation. Researchers studied the TNF genetic variants in a group of people who have Alpha-1 Antitrypsin Deficiency and found that carrying a specific TNF variant doubled the likelihood of the carriers having chronic bronchitis. [ref]

Check your genetic data for rs361525 (23andMe v4, v5; AncestryDNA):

  • A/A:  increased likelihood of having chronic bronchitis with Pi*Z mutation
  • A/G: increased likelihood of having chronic bronchitis with Pi*Z mutation
  • G/G: typical

Heterozygous advantage:

When mutations that cause a genetic disease are more common in the population than they statistically should be, researchers often check to see if there is an advantage for people who carry one copy of the mutation.  For example, people who carry one copy of the sickle cell anemia mutation are more resistant to malaria. The sickle cell mutation is more commonly found in people who live in Africa, where malaria is highly prevalent. People who carry one copy of the sickle cell mutation are more likely to survive malaria, thus passing on the mutation to their children.

A study published in 2016 looked at several different genetic diseases to see if there was an advantage to carrying one copy of the mutation.  For alpha-1 antitrypsin deficiency, the researchers found that carriers of one copy of the Pi*Z mutation tended to be taller (1.5cm on average) and also had greater initial lung volume. This could lead to a survival advantage for babies. [ref ]


Your doctor can run tests to see what your alpha-1 trypsin levels are. If you carry two copies of the mutation, you should definitely talk with your doctor about testing and about possible long-term implications for lung and liver function.

This is one mutation where it would be a really good idea not to drink or smoke.  Additionally, occupations where you are exposed to a lot of airborne particulate matter would not be a good idea…

Here are a couple of excellent resources for more information:


Related Genes and Topics:

TNF-alpha: Inflammation and Your Genes
Do you feel like you are always dealing with inflammation? Joint pain, food sensitivity, etc? Perhaps you are genetically geared towards a higher inflammatory response. Tumor necrosis factor (TNF) is an inflammatory cytokine that acts as a signaling molecule in our immune system. In an acute inflammatory situation, TNF-alpha plays an essential role in protecting us.


Author Information:   Debbie Moon
Debbie Moon is the founder of Genetic Lifehacks. She holds a Master of Science in Biological Sciences from Clemson University. Debbie is a science communicator who is passionate about explaining evidence-based health information. Her goal with Genetic Lifehacks is to bridge the gap between scientific research and the lay person's ability to utilize that information. To contact Debbie, visit the contact page.