VMAT2 gene: The God Gene and Neurotransmitters

We humans have long sought to integrate spirituality and science – wondering how consciousness, thought, feelings, self-transcendence, and spirituality are created in the brain. Genetics researchers have tried to answer these questions over the past few decades, and their search for a genetic basis of spirituality is intriguing.

This article examines the current research on the ‘God gene’, explaining what it does and why it is important in current research on Parkinson’s disease. Genetic variants in the VMAT2 gene increase the relative risk of addiction and Parkinson’s disease.

What is the “God” (VMAT2) gene?

VMAT2 is a neurotransmitter transporter encoded by the SLC18A2 (solute carrier family 18 member A2) gene.

It has also been dubbed the “God gene” due to its reported association with spirituality.[ref]

In a 2004 book by Dean Hammer, the VMAT2 gene was hypothesized to be the hereditary influence towards spirituality. The book, called The God Gene: How Faith is Hardwired into our Genes, laid out the idea that spirituality is heritable and, at least partly, due to the VMAT2 gene. The author suggests that selection for feel-good genes creates optimism for living even though death is inevitable.[ref]

What does the VMAT2 gene do?

VMAT2 (SLC18A2) is a monoamine transport gene. It packages monoamine neurotransmitters from the cytosol into vesicles.

Monoamine neurotransmitters include dopamine, serotonin, adrenaline, noradrenaline, histamine, and melatonin. These are the neurotransmitters important in thinking, behavior, physical movement, pain, emotion, wakefulness, and circulation.[ref][ref] Learn more about neurotransmitters here and here.

VMAT2 is important for transporting dopamine, serotonin, and other neurotransmitters into vesicles that are then released in the synapse of the neurons. In the cytosol of the cell, VMAT2 facilitates the packaging of the monoamines into secretory vesicles. These vesicles then move to the cell membrane to release their neurotransmitter payload into the synapse to send a signal to the next neuron.[ref]

This packaging up of the monamine neurotransmitters is essential because the monoamines are prone to oxidation in the cell. Thus, VMAT2 protects cells from oxidative stress from oxidized monoamines.[ref]

VMAT2 packages dopamine into vesicles before release into the synapse. CC image. PMC7372188

With its role in protecting neurons from oxidative stress, VMAT2 prevents damage to dopaminergic neurons. Parkinson’s results from damage to the dopaminergic neurons in the brain, and type 2 diabetes can result from dopamine damage in the pancreas.

Newly developed VMAT-2 inhibitors have a possible side effect of causing or unmasking Parkinson’s disease.[ref]

Research studies on VMAT-2:

For more than three decades, researchers have probed the functions of VMAT2. Here is a quick overview of recent research:

Faulty dopaminergic transmission is at the root of Parkinson’s. Increased VMAT2 is protective against Parkinson’s disease and also protects against toxicants that can cause Parkinson’s.[ref]

Animal studies show that conditionally reducing VMAT2 expression causes a whole-brain decrease in monoamine neurotransmitters.[ref]

Increased levels of VMAT2 can protect the brain from damage from methamphetamine.[ref]

Animal studies also show that increased VMAT2 is protective against anxiety and depression. Additionally, increased VMTA2 enhances locomotion.[ref]

Another place VMAT2 is essential is in the beta cells of the pancreas. Dopamine modulates the release of insulin, and VMAT2 is important here in the packaging up the dopamine. Thus, VMAT2 protects against oxidative stress in beta cells by controlling dopamine release.[ref]

Genetic variants in the ‘god gene’:

Members: Log in to see your data below Not a member? Join now to see your data.

SLC18A2 gene variants:

Check your genetic data for rs363276 (23andMe v4):

  • T/T: decreased VMAT2 levels, increased risk of PTSD[ref][ref]
  • C/T: decreased VMAT2 levels, increased risk of PTSD[ref]
  • C/C: typical

Members: Your genotype for rs363276 is .

Check your genetic data for rs363387 (23andMe v4; AncestryDNA):

  • T/T: increased risk of alcohol dependence[ref] (likely decreased VMAT2)
  • G/T: increased risk of alcohol dependence
  • G/G: typical

Members: Your genotype for rs363387 is .

Check your genetic data for rs363324 (23andMe v5):

  • A/A: lower risk of Parkinson’s[ref] (likely higher VMAT2)
  • A/G: typical risk of Parkinson’s
  • G/G: typical risk

Members: Your genotype for rs363324 is .

Check your genetic data for rs363227 (23andMe v4):

  • C/C: typical
  • C/T: slightly increased risk of psychotic disorders, poorer cognitive function
  • T/T: increased risk of psychotic disorders, poorer cognitive function[ref]

Members: Your genotype for rs363227 is .


VMAT2 inhibitors:

Inhibiting VMAT2 too much can cause Parkinson’s like symptoms due to its effect on dopamine. The positive side of VMAT2 inhibitors is that they theoretically may help with addiction treatment for cocaine or meth.

Inhibitors of VMAT2 include reserpine and tetrabenazine.

Reserpine, used in traditional Indian medicine, is a natural alkaloid derived from Rauwolfia plant species. Used as an antipsychotic and for treating hypertension, this medication’s sides effects, such as depression, can be severe.[ref]

Promoting VMAT2:

Theoretically, drugs that promote VMAT2 could be neuroprotective and possibly preventative for Parkinson’s. So far, researchers have not found direct synthetic agonists that increase VMAT2. [ref]

Theaflavins, a polyphenol in tea, have been shown to improve VMTA2 expression in the substantia nigra.[ref]

Puerarin, found in kudzu root extract, is a dopamine neuron protecting agent. Animal studies show that it interacts with VMAT2.[ref][ref]

I find it ironic that an extract made from kudzu, a plant that causes many Southerners to curse God, may increase the ‘God gene’ expression.

Related Articles and Topics:

Rapamycin, mTOR, and Your Genes
Rapamycin is an antibiotic that is used as an immunosuppressant, an anti-cancer agent, and to prevent blocked arteries. It is now the focus of longevity and healthspan-extending research through its inhibition of mTOR.

Boosting NAD+ levels to fight the diseases of aging
Explore the research about how nicotinamide riboside (NR) and NMN are being used to reverse aging. Learn about how your genes naturally affect your NAD+ levels, and how this interacts with the aging process.

Serotonin 2A receptor variants: psychedelics, brain aging, and Alzheimer’s disease
Learn how new research on brain aging and dementia connects the serotonin 2A receptor with psychedelics, brain aging, and Alzheimer’s.

Problems with IBS? Personalized solutions based on your genes
There are multiple causes of IBS, and genetics can play a role in IBS symptoms. Pinpointing your cause can help you to figure out your solution.


Author Information:   Debbie Moon
Debbie Moon is the founder of Genetic Lifehacks. She holds a Master of Science in Biological Sciences from Clemson University and an undergraduate degree in engineering from Colorado School of Mines. Debbie is a science communicator who is passionate about explaining evidence-based health information. Her goal with Genetic Lifehacks is to bridge the gap between the research hidden in scientific journals and everyone's ability to use that information. To contact Debbie, visit the contact page.