PMS, Genetics, and Solutions (Patrons Only)

A lot of women know the moodiness and brain fog that comes with premenstrual syndrome (PMS).  It can range from simply feeling irritable and icky to being something that really interferes with our lives.

What role do genes play in PMS?  It has been shown in the past few years that there is a genetic component, especially for a severe form of PMS called premenstrual dysphoric disorder (PMDD). PMS is thought to affect about 30-40% of women, while PMDD is rarer and affects only 3-8%.[ref] One 2011 study of twins estimated that heritability of PMS was around 95%.[ref]

Neurotransmitters cause some of the symptoms of PMS and PMDD. Serotonin is an important neurotransmitter involved in mood stability.

Estrogen is a serotonin agonist, and fluctuations in estrogen levels also affect serotonin levels. GABA, another neurotransmitter, is also involved in PMS symptoms for some.

Genes involved in PMS and PMDD


The rest of this article is available to Patrons via Patreon.  Thank you to all of you who support Genetic Lifehacks on Patreon!


Thyroid Hormone Levels and Your Genes

The genes involved in hypothyroidism and Grave's.
The genes involved in hypothyroidism and hyperthyroidism.

Your genes play a big role in how your thyroid works and how your body produces and converts the different forms of thyroid hormone.

Using your raw genetic data from 23andMe or another source, you can get an idea of areas that may be genetic weaknesses for you, possibly pointing to new approaches to managing your thyroid issues.

Why is this such a hot topic right now? More people than ever are having problems with low thyroid levels. In 2016, the #1 prescribed drug in the US was Synthroid, a synthetic thyroid hormone with 123 million people on the drug.[ref] Thyroid hormone levels play a vital role in how you feel and in your overall good health.

A quick overview (for those unfamiliar with thyroid):  thyroid hormones affect every cell in the body and control many functions such as metabolism, heart rate, body temperature, muscle contractions, and digestive functions.

The thyroid gland is located in the neck and uses iodine to create the thyroid hormones thyroxine(T4) and triiodothyronine(T3). The rate at which the thyroid gland produces and releases thyroid hormone is controlled by the hypothalamus and the pituitary gland through thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH).

Signs of Hypothyroidism (Wikimedia Commons)
Signs of Hypothyroidism (Wikimedia Commons)

Hypothyroidism is caused by too little thyroid hormone; hyperthyroidism is caused by too much thyroid hormone. T3 is the active form of thyroid.  The thyroid gland produces and releases much more T4 than T3 (around 90% more), but enzymes can convert T4 to T3 in your tissues and organs. Too much of the active T3 in cells will cause enzymes to inactivate it to reverse T3.

So you can see that thyroid hormone levels are an intricate balance between production of T4, conversion to T3, inactivation to rT3, TSH levels, and the feedback loops controlling TRH and TSH. So in addition to diet and environmental toxins, genetics can play a role at many points along the way.

A good source of background information on all things thyroid is the website (and book) Stop the Thyroid Madness.  If you are unfamiliar with the ins-and-outs of thyroid hormones, I recommend that you start there first.

T4 deiodinated to T3DIO1, DIO2T4 deactivated to rT3T3 converted to T2DIO3

Genetics  of thyroid hormone levels:
A person can be naturally slightly higher or lower than the average for TSH levels based on their genes.   An interesting study published in the journal of the European Society of Endocrinology looked at the heritability of thyroid hormone levels in men who had no thyroid auto-immune disease or dysfunction and found several SNPs that were responsible for approximately 50 – 90% of thyroid hormone variability.

TSHR – Thyroid stimulating hormone receptor (TSHR) gene codes for a receptor protein that controls thyroid cell metabolism. [ref]

TSH (thyroid stimulating hormone) levels are also tied to genetic variations. TSH levels are often the first thing that a doctor will check in regards to thyroid function, although some argue that TSH is not very useful in diagnosing hypothyroidism.

Check your 23andMe results for rs1991517 (v.4):

  • CC: normal
  • GG: slightly lower average TSH [ref]

Check your 23andMe results for rs179247 (v4):

  • AA: increased risk (slightly) of Grave’s [ref]
  • AG: increased risk (slight) of Grave’s
  • GG: normal risk of Grave’s

The PDE8B gene polymorphism is associated with TSH levels, specifically in those of European descent.[ref]  There are quite a few studies on this gene; a search in PubMed will give you more information.

Check your 23andMe results for rs4704397 (v.4, v.5):

  • AA: increase of 0.26 uIU/ml in serum TSH [ref]
  • AG: increase of 0.13 uIU/ml in serum TSH
  • GG: no increase in serum TSH

Check your 23andMe results for rs6885099 (v.4, v.5)

  • AA: increased serum TSH [ref]
  • AG: increased serum TSH
  • GG: normal serum TSH

The FOXE1 gene (thyroid specific forkhead transcription factor) has also been identified to increase the risk of primary hypothyroidism. [ref]

Check your 23andMe results for rs7850258 (v.4, v.5):

  • AA: Lower odds of hypothyroidism (OR = 0.74)  [ref]
  • AG: Typical odds of hypothyroidism
  • GG: Slightly higher odds of hypothyroidism

Check your 23andMe results for rs965513 (v.4, v.5):

  • AA: decreased TSH, increased risk of thyroid cancer[ref]
  • AG: decreased TSH
  • GG: normal

AutoImmune Thyroid Gene Variants – Grave’s and Hashimoto’s

A 2012 study published in the Endocrine Journal showed that there are several SNPs in the TSHR gene that influence the risk of the autoimmune thyroid diseases (AITD), which includes Graves’ disease and Hashimoto’s thyroiditis.  The study states that “genetic factors confer 80% contribution to the etiology of AITD”.[ref]  Note that this does not mean that 80% of people with the SNPs have Graves’ or Hashimoto’s.  The prevalence of Hashimoto’s in Caucasian women is between 1 and 2% and is even less in men.[ref]

Check your 23andMe results for rs3783938 (v.4):

  • TT: higher frequency of Hashimoto’s (OR 1.4)
  • CT: higher frequency of Hashimoto’s
  • CC: normal


Check your 23andMe results for rs12101255 (v.4):

  • TT: higher frequency of Graves’ disease (OR 1.4 – 1.8) [ref]
  • CT: higher frequency of Graves’ disease
  • CC: normal


Check your 23andMe results for rs179247 (v.4):

  • AA: increased risk of Graves’ disease (OR 1.4 – 1.8) [ref]
  • GG: normal


DIO1, DIO2 – Deiodinase genes for conversion of storage (T4) to active (T3)

The deiodinase 1 (DIO1) gene encodes a protein that converts T4 to T3 and is involved in the degradation of both T3 and T4.  Iodine and selenium are involved in these reactions.  [ref]  DIO2 is also involved in the conversion of T4 to T3.

Check your 23andMe results for rs2235544 (v.4, v.5):

  • AA: decrease ratio of fT3 to fT4, decreased free T3  [ref]
  • CC: increased free T3 and decreased free T4


Check your 23andMe results for rs11206244 (v.4, v.5):

  • TT: higher rT3, lower free T3  [ref]
  • CT: lower T3
  • CC: normal


Check your 23andMe results for rs225014 (v.4):

  • CC: decreased DIO2 enzyme (T4 to T3 conversion)  [ref]
  • CT: decreased T4 to T3 conversion
  • TT: normal DIO2 enzyme

So why would these deiodinase polymorphisms be important?  The most common prescription for hypothyroidism is Synthroid, which is T4 only.  One reason for not doing well with Synthroid could be that the T4 is not being converted properly to T3 by the deiodinase enzymes.

Thyroid Hormone Receptors  (THRB, THRA)

Check your 23andMe results for rs28933408 (v.4): [snpedia]

  • TT: thyroid hormone resistance  [ref]
  • GG: normal


  • Selenium is essential to the conversion of T4 to T3.  Brazil nuts are a good source of selenium, and supplements are also available.
  • The dietary flavonoid kaempferol, found in apples, onions, leeks, grapes, and other fruits and vegetables, induces DIO2 increasing conversion to T3. [study]
  • There are thyroid glandular supplements (dried thyroid gland) which may — or may not — increase thyroid hormones. The reviews are mixed. It is interesting to note that people historically ate most parts of animals including the thyroid gland.  Sweetbreads are the thyroid glands of calves or lambs.
  • Gluten is often pointed to as a culprit in autoimmune thyroid diseases (Graves and Hashimoto’s).  A 2003 study showed that ~5% of patients with autoimmune thyroiditis also had immune reactions to gluten.[study]  While that isn’t a huge percentage, it may be worth trialing a gluten-free diet if you have an autoimmune thyroid disease.
  • In studies, fasting and critical illnesses increase the levels of DIO3, which is the enzyme that deactivates thyroid hormone.[study]  Avoiding fasting (and illness!) should thus be better for thyroid hormone supply.
  • Light and circadian rhythms play a role in DIO3 expression as well.[study] Blocking blue light in the evening (from LED bulbs, TV screens, etc) by wearing blue-blocking glasses will help to keep your circadian rhythm on track.
  • Several recent studies have also pointed to the hereditary epigenetic effects on DIO3 as well.  [study]
  • For autoimmune thyroid problems, myo-inositol and selenium have been shown to reduce antibody levels. [study]
  • Vitamin D supplement has been shown to reduce Hashimoto’s antibody levels. [study]  This is the one that I use that has coconut oil instead of soybean oil.  (Not saying that anyone should by the brand because I use it — rather that you should make sure that read the ingredients so that you don’t end up with soybean oil or cottonseed oil.)

Recent studies on thyroid levels and chemical toxins:
With so many people having problems with thyroid hormone levels, the question becomes:  Why now? What is causing this explosion? The foods that we are eating and the fact that we no longer eat the thyroid glands of animals probably plays a role in the hypothyroid epidemic. Additionally, chemicals that are found in nearly everyone’s bloodstream, such as PFOA’s, BPA and phthalates, have been shown in several recent studies to be related to lower thyroid levels.  Study results include:

  • PFAS (Perfluoroalkyl substances in cleaners, insecticides, flame retardants, carpet and fabric stain repellant, and food packaging) affect TSH levels [study]
  • BPA and phthalates (in plastics and register receipts) affect thyroid levels.[study] Read more about how genes play a role in your ability to detox BPA and phthalates.
  • Triclosan (previously used in antibacterial soaps) affects T3 and T4 levels as well as other markers. [study]
  • Depending on your DIO2 genes, organochlorides (in pesticides) may make a significant difference in your thyroid levels.[study]
  • Sucralose (Splenda) also alters thyroid hormone levels by increasing rT3 (a rat study) [study]

More to read
I encourage everyone who has thyroid problems to read and research more on this issue; you are your own best advocate. There is a lot more to learn about the topic:

Updated 4/2017