HPA Axis Dysfunction: Understanding Cortisol and Genetic Interactions

Cortisol is a hormone produced by the adrenal glands in times of stress, and it also plays many roles in your normal bodily functions. It is a multi-purpose hormone that needs to be in the right amount (not too high, not too low) and at the right time. Your genes play a big role in how likely you are to have problems with cortisol.

Blood pressure, MTHFR, and riboflavin

The common MTHFR C677T variant increases the relative risk of high blood pressure. Learn how to add more Riboflavin (B2) into your diet to reduce risk.

Estrogen, histamine, and mast cell connections

Mast cells can be more easily triggered in the presence of high estrogen or estrogen-mimicking compounds. Histamine can also trigger mast cell degranulation. Together, this can cause a lot of symptoms related to mast cell activation.

MTHFR Mutation: What is it? How to check your raw data.

The MTHFR gene is important for how your body utilizes folate (vitamin B9) for creating neurotransmitters, detoxifying toxicants, and maintaining a healthy heart. Check your 23andMe or AncestryDNA data for the MTHFR C677T and A1298C variants.

ADRA1A Receptors: Blood vessel reactions under stress

We have many systems in place to control blood pressure and heart rate. The ADRA1A receptors are part of this system. Discover how variants can influence blood vessel stress response and how others are connected to cognitive changes.

Long Spike

Discover the research and genetic links to why you may be more susceptible to certain outcomes with long spike.

IL13 Genomics: Elevating Th2 Immune Response

Interleukin-13 (IL-13) is a signaling molecule important in the immune response. Excessive IL-13 can tip you toward a Th2-dominant immune response, and variants increase the risk of allergies and asthma.

7 genetic variants that increase your risk of blood clots

Some people are unique in their ability to form clots more easily. This article covers six different genes and the seven genetic variants that increase the risk of blood clots. It is a timely topic because blood clots seem to be a severe complication for people with COVID-19.

Spike Protein, Mast Cells, Histamine, and Heart Rhythms

Do you know of someone with unexplained heart palpitations, spiking blood pressure, dizziness, and tinnitus? Discover how research is linking these symptoms to histamine, mast cells, and the spike protein.

Lipoprotein a: How to check your genetic data for Lp(a)

High Lp(a) levels are a big risk factor for sudden heart attacks. Your Lp(a) levels are mainly controlled by your genetic variants. Check to see if you carry genetic variants that increase or decrease Lp(a).

Von Willebrand Factor Deficiency

von Willebrand disease is a bleeding disorder in which blood doesn’t clot properly. Discover how genetic mutations cause the von Willebrand factor not to perform as it should.

What is YOUR risk of heart disease?

Coronary artery disease (CAD) is heritable. Understanding your genes and a ‘heart healthy’ lifestyle can prevent heart attacks and death.

LDL Cholesterol Genes

Your genes combine with your diet to influence your LDL cholesterol level. Learn more about why LDL cholesterol levels may matter in heart disease and find out how your genes are important here.

FTO is more than just an obesity gene

FTO and m6A methylation: From COVID to Cancer to Obesity

The initial research on the FTO gene was all about how it relates to increased BMI and increased fat cell creation. More recently, researchers discovered that FTO is an m6A eraser that removes methyl groups from mRNA. This discovery has opened up huge avenues of research on topics from cancer to immune response to heart disease.

Elevated Fibrinogen: Risk factor for blood clots

Fibrinogen is a protein that is essential for creating blood clots when you get a wound. But higher levels of fibrinogen are a major risk factor for heart disease and DVT. Learn how your genes impact your fibrinogen level.

Rapamycin, mTOR, and Your Genes

Rapamycin is an antibiotic used as an immunosuppressant, an anti-cancer agent, and to prevent blocked arteries. Rapamycin is now the focus of longevity and healthspan-extending research by inhibiting mTOR.